Synthesis, Properties and Use of Nitridotricarbonic Acid Tri-*tert*-Butyl Ester Fredrik Degerbeck, Leif Grehn and Ulf Ragnarsson Department of Biochemistry, Uppsala University, Biomedical Center, P.O. Box 576, S-751 23 UPPSALA, Sweden Degerbeck, F., Grehn, L. and Ragnarsson, U., 1993. Synthesis, Properties and Use of Nitridotricarbonic Acid Tri-*tert*-Butyl Ester. – Acta Chem. Scand. 47: 896–898. Exhaustive *tert*-butoxycarbonylation of Boc₂NH with Boc₂O-DMAP furnishes Boc₃N in nearly quantitative yield. This stable compound is susceptible to nucleophiles and affords Boc₂NH upon aminolysis. The properties of Boc₃N have been exploited in a practical one-pot procedure for the synthesis of Boc₂NH from NH₄Cl, which is particularly economical in the preparation of Boc₂¹⁵NH. In connection with efforts to optimize our earlier synthesis of Boc₂NH (Boc = tert-butoxycarbonyl), originally prepared by Carpino,¹ we observed that the crude product always contained minor amounts of BocNH₂ together with traces of a hitherto unknown compound.^{2,3} After isolation and purification, spectroscopic evidence indicated that this new compound was nitridotricarbonic acid tri-tert-butyl ester, Boc₃N. This substance is a white crystalline solid and is perfectly stable under ordinary conditions. Scattered information about nitridotricarbonic acid trialkyl esters is available in the literature. The only derivative described hitherto appears to be the triethyl ester.⁴ Synthesis of Boc₃N. Larger amounts of pure Boc₃N were conveniently accessible by exhaustive tert-butoxy-carbonylation of Boc₂NH with Boc₂O in dry acetonitrile in the presence of catalytic amounts of 4-dimethylaminopyridine (DMAP), as depicted in eqn. (1).⁵ The yield in this conversion was essentially quantitative and the $$Boc_{2}NH \xrightarrow{Boc_{2}O, DMAP/CH_{3}CN} Boc_{3}N$$ (1) desired product of excellent purity was obtained by a simple work-up. Nucleophilic cleavage of Boc₃N. Although Boc₃N was sufficiently stable under neutral conditions, it seemed to be rather labile in alkaline or acidic media. Thus Boc₃N readily underwent nucleophilic displacement in the presence of various amines, thereby smoothly reverting to Boc₂NH. Evidently, the third Boc function is considerably more unstable to such aminolytic conditions than are the remaining Boc groups.⁶ This cleavage could also be readily accomplished with the strong base 1,1,3,3-tetramethylguanidine (TMG) in methanol but a preliminary NMR study indicated that this selective deblocking was at least five times faster when a small excess of 2-diethylaminoethylamine (DEAEA) was used with acetonitrile as the reaction medium. This latter deprotection reagent also provided a more practical work-up since all of the reagent was readily removed by a simple acidic extraction.² It is surprising that no trace of BocNH₂ was detected in the crude cleavage mixture even after prolonged treatment with an excess of strong bases such as TMG or hydrazine.⁶ We have also confirmed that the potassium salt of Boc₂NH was stable for several months when stored under normal laboratory conditions. Obviously the Boc₂N⁻ anion is an electronically stabilized species under these conditions. One-pot preparation of Boc₂NH via Boc₃N. The properties of this novel compound were further exploited in a new convenient one-pot procedure for the efficient synthesis of the very useful amine precursor Boc₂NH using NH₄Cl as the starting material. Thus, powdered NH₄Cl was suspended in a solution of excess Boc₂O in dry acetonitrile. Upon slow addition of an excess of DMAP, the BocNH₂ initially formed was subsequently converted via Boc₂NH into Boc₃N. This intermediate was then aminolysed with DEAEA to furnish essentially pure Boc₂NH in excellent overall yield. In this context it is also worth mentioning that a stepwise approach using other bases such as triethylamine or TMG to liberate ammonia from NH₄Cl, together with DMAP, furnished mainly BocNH₂. This intermediate species could not readily be converted into the desired Boc, N using a large excess of Boc₂O in the presence of catalytic amounts of DMAP following the one-pot strategy. Presumably DMAP is partly protonated by the hydrochloride present, thereby inhibiting its catalytic activity. Attempted selective acidolysis of Boc, N. Preliminary experiments aimed at the selective removal of one Boc function from Boc₃N under acidic conditions have given less encouraging results. Normally, Boc derivatives are deprotected with mild acid⁷ and it has also proved possible to split off one Boc group selectively from the Boc₂N moiety using a small excess of trifluoroacetic acid (TFA) in a dilute solution.8-11 However, attempted removal of one Boc group from Boc₃N using a small excess of TFA in dilute dichloromethane solution gave a mixture of Boc₃N, Boc₂NH and BocNH₂. A further investigation revealed that excess trichloroacetic acid rapidly and non-selectively removed all Boc groups, whereas Boc₃ N was largely uneffected by formic acid and chloroacetic acid under comparable conditions. A somewhat slower deprotection occurred in the presence of dichloroacetic acid but even in this case the removal of one Boc moiety could not be achieved in a selective manner. ## Concluding remarks This new procedure provides a viable alternative for the synthesis of ¹⁵N-labelled Boc₂NH from the less expensive ¹⁵NH₄Cl. The previously published procedure ¹² utilized HCO¹⁵NH₂ as the starting material, thus mimicking the synthesis of unlabelled Boc₂NH.² In recent years Boc₂¹⁵NH has found interesting applications in the preparation of various ¹⁵N-labelled amino acids. ⁸⁻¹⁰ The increased accessibility of Boc₂¹⁵NH afforded by this method will no doubt render this important amine precursor a convenient starting material for the synthesis of various other ¹⁵N-labelled amino derivatives. ## **Experimental** All melting points were measured with a Gallenkamp melting point apparatus and are uncorrected. All solvents used as reaction media were of analytical grade and were dried over molecular sieves (4 Å). DMAP was recrystallized from EtOAc (4 ml g $^{-1}$, decolourizing carbon) and dried meticulously under high vacuum before use. TLC analyses were performed on 0.25 mm thick precoated UV-sensitive silica plates (Merck DC-Fertigplatten Kieselgel 60 F $_{254}$) and the mobile phases used were petroleum ether (b.p. 40–65°C)–Et $_2$ O 2:1 (A) and toluene–MeCN 2:1 (B). TLC spots were visualized, after brief heating, by exposure to Cl₂ followed by dicarboxidine spray (violet-blue spots). ¹³ ¹H and ¹³C NMR spectra were recorded on a JEOL JMN-EX 270 instrument at 270 MHz and 67.9 MHz, respectively, and ¹⁵N NMR spectra were measured on a JEOL FX 90Q at 9.03 MHz, all in CDCl₃. The NMR data are compiled in Table 1. FT-IR spectra were recorded for KBr disks at 4 cm⁻¹ resolution on a Mattson Polaris spectrometer equipped with software for conversion to % transmission and unbiased determinations of positions and intensities of bands. Pertinent peaks are summarized in Table 2. (For comparison, BocNH₂ and its ¹⁵N labelled analogue are also included in Tables 1 and 2). Elemental analyses (CHN) were carried out by Mikro Kemi AB, Uppsala, Sweden. Nitridotricarbonic acid tri-tert-butyl ester (Boc_3N) . Recrystallized Boc₂NH (2.17 g, 10.0 mmol) and Boc₂O (2.40 g, 11.0 mmol) were dissolved in dry CH₃CN (10 ml) and treated with DMAP (122 mg, 1.00 mmol) in small portions with rapid stirring at room temperature under dry argon. After 1 h, TLC indicated complete reaction and after a further 2 h the solvent was stripped off at reduced pressure. The oily brownish residue was partitioned between ether (80 ml) and 0.2 M citric acid (40 ml) and the colourless organic extract was washed successively with 0.2 M citric acid, 1 M NaHCO3 and saturated NaCl (3 × 20 ml each) and dried over MgSO₄. After treatment with decolourizing carbon, the solvent was evaporated off to furnish a white solid weighing 3.11 g (98%). TLC (A,B) on the crude product gave one spot. Recrystallization of this material from light petroleum (10 ml g $^{-1}$, decolourizing carbon) afforded white crystals m.p. 66-66.5°C after seeding and chilling to 0°C overnight. Found: C, 56.8; H, 8.6; N, 4.6. C₁₅H₂₇NO₆ requires C, 56.8; H, 8.6; N, 4.6. [15N]Nitridotricarbonic acid tri-tert-butyl ester (Boc₃15N). Prepared from Boc₂15NH¹² on a 5 mmol scale by analogy with the unlabelled analogue above in 99% crude yield. Recrystallization furnished white crystals m.p. 66–66.5°C. Di-tert-Butyl imidodicarbonate (Boc₂NH) by DEAEA-mediated aminolysis of Boc₃N. Recrystallized Boc₃N (1.59 g, 5.00 mmol) was dissolved in dry CH₃CN (10 ml) under dry nitrogen and treated dropwise with DEAEA Table 1. NMR data of Boc amides in CDCl₃ (δ). | Comp.
(5% soln.) | 1 H NMR ($\delta_{TMS} = 0$) | | ¹³ C NMR ($\delta_{CDCl_3} = 77.0$) | | | ¹⁵ N NMR | |----------------------------------|-------------------------------------|-----------------------------|--|-------------------|------------------------------|-----------------------------------| | | CH ₃ | NH (J _{15N1H} /Hz) | CH ₃ | Me ₃ C | CO (J _{13C15N} /Hz) | $(\delta_{HCO^{15}NH_2} = 113.2)$ | | BocNH ₂ | 1.45 | 4.61 | 28.2 | 79.6 | 156.4 | | | Boc15NH ₂ | 1.45 | 4.74 (88.8) | 28.2 | 79.5 | 156.5 (25.7) | 73.5 | | Boc ₂ NH ² | 1.48 | 6.81 ` ´ | 28.0 | 81.9 | 149.7 ` ´ | _ | | Boc ₂ 15NH | 1.48 | 6.82 (90.8) | 28.0 | 81.9 | 149.7 (25.6) | 119.4 | | Boc ₃ N | 1.51 | _ ` ` ' | 27.7 | 83.9 | 148.9 ` ´ | _ | | Boc ₃ 15N | 1.51 | _ | 27.6 | 83.9 | 148.8 (22.0) | 158.6 | Table 2. FT-IR data on Boc₃N and related substances.^a | Compound | NH | СО | Amide-II | Other strong bands | |-----------------------------------|-----------------------------------|---|-----------------------|---| | BocNH ₂ | 3449 (s) ₂
3261 (m) | 1686 (s) ₁ | 1608 (m) ₅ | 1393 ₄ , 1366 ₃ | | Boc ¹⁵ NH ₂ | 3438 (s) ₂
3247 (m) | 1679 (s) ₁ | 1603 (m) ₅ | 1392 ₄ , 1366 ₃ | | Boc₂NH | 3270 (m) | 1762 (s) ₃ ^b | 1529 (s) ₄ | 1146 ₂ , 1102 ₁ | | Boc ₂ ¹⁵ NH | 3260 (m) | 1760 (s) ₃ ^c | 1513 (s)₄ | 1140 ₁ , 1097 ₂ | | Boc ₃ N | _ | 1799 (s) ₃
1757 (s)
1723 (s) | _ | 1284 ₂ , 1261, 1158 ₄ , 1103 ₁ | | Boc ₃ ¹⁵ N | | 1799 (s) ₃
1756 (s)
1723 (s) | _ | 1275 ₅ , 1257 ₄ , 1151 ₂ , 1099 ₁ | ^a Bands are characterized as s(trong), m(edium) and w(eak) and/or by subscripts according to decreasing intensity. ^bWeak bands visible also at 1799 and 1775 cm⁻¹. ^cWeak bands also at 1798 and 1774 cm⁻¹. (871 mg, 7.50 mmol) with rapid stirring at room temperature over a period of 30 min. The pale yellow solution was stirred overnight after which TLC (A) confirmed that all Boc₃N had been consumed. The solvent was stripped off at reduced pressure and the brownish syrupy residue was partitioned between ether (80 ml) and 1 M KHSO₄ (40 ml). The colourless extract was washed in turn with 1 M KHSO₄, 1 M NaHCO₃ and sat. NaCl (3×20 ml each), dried over MgSO₄ and treated with decolourizing carbon. The yield of pure Boc₂NH was 1.04 g (96%) and the recrystallized sample was identical in all respects with an authentic specimen.² Di-tert-Butyl imidodicarbonate (Boc, NH). One-pot procedure from NH₄Cl. Well-dried, finely ground NH₄Cl (535 mg, 10.0 mmol) was suspended in a solution of Boc₂O (10.9 g, 50.0 mmol) in dry CH₃CN (30 ml) under dry argon at ambient temperature. The resulting slurry was then treated dropwise with DMAP (2.45 g, 20.0 mmol) dissolved in dry CH₃CN (20 ml) with rapid stirring over a period of 1 h. The initially vigorous evolution of gas gradually subsided after a few hours and the stirring was continued overnight (23 h) with exclusion of moisture. TLC (A,B) confirmed that the reaction mixture contained Boc₃N together with traces of the desired end product Boc, NH. The resulting clear yellow solution was treated dropwise with vigorous agitation with DEAEA (4.65 g, 40.0 mmol) over a period of 1 h and the reaction mixture was stirred at room temperature overnight with exclusion of atmospheric moisture. Removal of the solvent at reduced pressure left a brownish thick oil which was partitioned between ether (200 ml) and 1 M KHSO₄ (100 ml). The ethereal extract was washed in turn with 1 M KHSO₄, 1 M NaHCO₃ and saturated NaCl $(3 \times 50 \text{ ml each})$, dried over MgSO₄ and treated with decolourizing carbon. Evaporation afforded 2.09 g (96%) of essentially pure product and the recrystallized sample was identical in all respects with an authentic specimen.² Di-tert-Butyl [15N]imidodicarbonate (Boc₂15NH). One-pot procedure from 15NH₄Cl. Boc₂15NH was synthesized in 94% yield on a 5 mmol scale by the procedure detailed above for the unlabelled analogue. The properties of the recrystallized sample agreed in all respects with those reported earlier.⁷ Acknowledgments. Generous support of this work by the Swedish Natural Science Research Council, the National Swedish Board for Technical Development as well as the H. Axelson Johnson and M. Bergvall Foundations is gratefully acknowledged. ## References - 1. Carpino, L. A. J. Org. Chem. 29 (1964) 2820. - 2. Grehn, L. and Ragnarsson, U. Synthesis (1987) 275. - For a recent review of imidodicarbonates and related compounds and their use as synthetic intermediates see Ragnarsson, U. and Grehn, L. Acc. Chem. Res. 24 (1991) 285. - 4. Diels, O. Ber. Dtsch. Chem. Ges. 36 (1903) 736. - Grehn, L., Gunnarsson K. and Ragnarsson, U. Acta Chem. Scand., Ser. B 40 (1986) 745 and references cited therein. - Grehn, L., Gunnarsson, K. and Ragnarsson, U. Acta Chem. Scand., Ser. B 41 (1987) 18. - Greene, T. W. and Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed., Wiley, New York 1991. - Degerbeck, F., Fransson, B., Grehn, L. and Ragnarsson, U. J. Chem. Soc., Perkin Trans. 1 (1992) 245. - 9. Grehn, L., Bondesson, U., Pehk, T. and Ragnarsson, U. J. Chem. Soc., Chem. Commun. (1992) 1332. - Degerbeck, F., Fransson, B., Grehn, L. and Ragnarsson, U. J. Chem. Soc., Perkin Trans. 1 (1993) 11. - Connell, R. D., Rein, T., Åkermark, B. and Helquist, P. J. Org. Chem. 53 (1988) 3845. - 12. Gunnarsson, K. and Ragnarsson, U. In: Giralt, E. and Andreu, D., Eds., *Peptides 1990. Proceedings of the 21st European Peptide Symposium*, Escom, Leiden 1991, pp. 307-308. - Svahn, C. M. and Gyllander, J. J. Chromatogr. 170 (1979) 292. Received December 14, 1992.